EconPapers    
Economics at your fingertips  
 

Conformal multi-symplectic integration methods for forced-damped semi-linear wave equations

Brian E. Moore

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 80, issue 1, 20-28

Abstract: Conformal symplecticity is generalized to forced-damped multi-symplectic PDEs in 1+1 dimensions. Since a conformal multi-symplectic property has a concise form for these equations, numerical algorithms that preserve this property, from a modified equations point of view, are available. In effect, the modified equations for standard multi-symplectic methods and for space-time splitting methods satisfy a conformal multi-symplectic property, and the splitting schemes exactly preserve global symplecticity in a special case. It is also shown that the splitting schemes yield incorrect rates of energy/momentum dissipation, but this is not the case for standard multi-symplectic schemes. These methods work best for problems where the dissipation coefficients are small, and a forced-damped semi-linear wave equation is considered as an example.

Keywords: Multi-symplectic PDE; Conformal symplectic; Structure-preserving algorithm; Splitting methods; Modified equations (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409001748
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2009:i:1:p:20-28

DOI: 10.1016/j.matcom.2009.06.024

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:80:y:2009:i:1:p:20-28