Solitary wave families of NLPDES via reversible systems theory
S. Roy Choudhury
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 80, issue 1, 37-45
Abstract:
The Ostrovsky equation is an important canonical model for the unidirectional propagation of weakly nonlinear long surface and internal waves in a rotating, inviscid and incompressible fluid. Since solitary wave solutions often play a central role in the long-time evolution of an initial disturbance, we consider such solutions here (via the normal form approach) within the framework of reversible systems theory. Besides confirming the existence of the known family of solitary waves and its reduction to the KdV limit, we find a second family of multihumped (or N-pulse) solutions, as well as a continuum of delocalized solitary waves (or homoclinics to small-amplitude periodic orbits). On isolated curves in the relevant parameter region, the delocalized waves reduce to genuine embedded solitons. The second and third families of solutions occur in regions of parameter space distinct from the known solitary wave solutions and are thus entirely new. Directions for future work, including on other NLPDEs, are also mentioned.
Keywords: Solitary wave families; Reversible systems theory (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409001761
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2009:i:1:p:37-45
DOI: 10.1016/j.matcom.2009.06.029
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().