EconPapers    
Economics at your fingertips  
 

Polynomial chaos for simulating random volatilities

Roland Pulch and Cathrin van Emmerich

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 80, issue 2, 245-255

Abstract: In financial mathematics, the fair price of options can be achieved by solutions of parabolic differential equations. The volatility usually enters the model as a constant parameter. However, since this constant has to be estimated with respect to the underlying market, it makes sense to replace the volatility by an according random variable. Consequently, a differential equation with stochastic input occurs, whose solution determines the fair price in the refined model. Corresponding expected values and variances can be computed approximately via a Monte Carlo method. Alternatively, the generalised polynomial chaos yields an efficient approach for calculating the required data. Based on a parabolic equation modelling the fair price of Asian options, the technique is developed and corresponding numerical simulations are presented.

Keywords: Polynomial chaos; Parabolic equation; Method of lines; Volatility; Option price (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409001645
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2009:i:2:p:245-255

DOI: 10.1016/j.matcom.2009.05.008

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:80:y:2009:i:2:p:245-255