Global asymptotic stability of uncertain stochastic bi-directional associative memory networks with discrete and distributed delays
Huisheng Shu,
Zidong Wang and
Zengwei Lü
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 80, issue 3, 490-505
Abstract:
In this paper, the global asymptotic stability analysis problem is investigated for a class of stochastic bi-directional associative memory (BAM) networks with mixed time-delays and parameter uncertainties. The mixed time-delays consist of both the discrete and the distributed delays, the uncertainties are assumed to be norm-bounded, and the neural network are subject to stochastic disturbances described by a Brownian motion. Without assuming the monotonicity and differentiability of activation functions, we employ the Lyapunov–Krasovskii stability theory and some new developed techniques to establish sufficient conditions for the stochastic delayed BAM networks to be globally asymptotically stable in the mean square. These conditions are expressed in terms of the feasibility to a set of linear matrix inequalities (LMIs) that can be easily checked by utilizing the numerically efficient Matlab LMI toolbox. A simple example is exploited to show the usefulness of the derived LMI-based stability conditions.
Keywords: Bi-directional associative memory neural networks; Discrete and distributed delays; Global asymptotic stability; Linear matrix inequality; Lyapunov–Krasovskii functionals (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475408002474
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2009:i:3:p:490-505
DOI: 10.1016/j.matcom.2008.07.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().