EconPapers    
Economics at your fingertips  
 

Thresholds for soliton creation in the Ablowitz–Ladik lattice

J. Adrián Espínola-Rocha and P.G. Kevrekidis

Mathematics and Computers in Simulation (MATCOM), 2009, vol. 80, issue 4, 693-706

Abstract: Square barrier initial potentials for the Ablowitz–Ladik (AL) lattice are considered, both in the single component as well as in the vector (Manakov) case. We determine the threshold condition for creating solitons with such initial conditions in these integrable, discrete versions of the nonlinear Schrödinger equation for the case of one-, two-, three- and four-site barriers. We find that for square barriers in the scalar case, it is impossible to generate a soliton with a single-site excitation, while only one soliton can be produced from a two-site and three-site square barrier. Finally, in the four-site case, there appear to be two thresholds, one leading to a soliton and a second one to a breathing soliton. We illustrate the differences of the vector case from the scalar one for initial conditions with disjoint support between the components, and also discuss the case of non-square barriers. The analytical findings are corroborated by numerical simulations in all the presented cases.

Keywords: Discrete solitons; Excitation thresholds; Ablowitz-Ladik equation; Non-linear Schrödinger equation (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409002729
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2009:i:4:p:693-706

DOI: 10.1016/j.matcom.2009.08.022

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:80:y:2009:i:4:p:693-706