Extended nonlinear waves in multidimensional dynamical lattices
Q.E. Hoq,
J. Gagnon,
P.G. Kevrekidis,
B.A. Malomed,
D.J. Frantzeskakis and
R. Carretero-González
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 80, issue 4, 721-731
Abstract:
We explore spatially extended dynamical states in the discrete nonlinear Schrödinger lattice in two- and three-dimensions, starting from the anti-continuum limit. We first consider the “core” of the relevant states (either a two-dimensional “tile” or a three-dimensional “stone”), and examine its stability analytically. The predictions are corroborated by numerical results. When the core is stable, we propose a method allowing the extension of the structure to as many sites as may be desired. In this way, various patterns of excited sites can be formed. The stability of the full extended nonlinear structures is studied numerically, which yields instability thresholds for such structures, which are attained with the increase of the lattice coupling constant. Finally, in cases of instability, direct numerical simulations are used to elucidate the evolution of the pattern; it is found that, typically, the unstable extended nonlinear pattern breaks up in an oscillatory way, leading to “lattice turbulence”.
Keywords: Nonlinear lattices; Discrete solitons; Nonlinear Schrödinger equation (search for similar items in EconPapers)
Date: 2009
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409002602
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2009:i:4:p:721-731
DOI: 10.1016/j.matcom.2009.08.035
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().