Symbolic integration using homotopy methods
Bernard Deconinck and
Michael Nivala
Mathematics and Computers in Simulation (MATCOM), 2009, vol. 80, issue 4, 825-836
Abstract:
The homotopy algorithm is a powerful method for indefinite integration of total derivatives. By combining these ideas with straightforward Gaussian elimination, we construct an algorithm for the optimal symbolic integration that contain terms that are not total derivatives. The optimization consists of minimizing the number of terms that remain unintegrated. Further, the algorithm imposes an ordering of terms so that the differential order of these remaining terms is minimal. A different method for the summation of difference expressions is presented in .
Keywords: Symbolic integration; Homotopy methods; Optimization; Variational calculus (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847540900281X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2009:i:4:p:825-836
DOI: 10.1016/j.matcom.2009.08.032
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().