The Birnbaum–Saunders autoregressive conditional duration model
Chad R. Bhatti
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 10, 2062-2078
Abstract:
In this paper we introduce the Birnbaum–Saunders autoregressive conditional duration (BS-ACD) model as an alternative to the existing ACD models which allow a unimodal hazard function. The BS-ACD model is the first ACD model to integrate the concept of conditional quantile estimation into an ACD model by specifying the time-varying model dynamics in terms of the conditional median duration, instead of the conditional mean duration. In the first half of this paper we illustrate how the BS-ACD model relates to the traditional ACD model, and in the second half we discuss the assessment of goodness-of-fit for ACD models in general. In order to facilitate both of these points, we explicitly illustrate the similarities and differences between the BS-ACD model and the Generalized Gamma ACD (GG-ACD) model by comparing and contrasting their formulation, estimation, and results from fitting both models to samples for six NYSE securities.
Keywords: Conditional quantile estimation; Dependent point process; Duration modeling; Financial transaction data (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (19)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410000868
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:10:p:2062-2078
DOI: 10.1016/j.matcom.2010.01.011
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().