Chebyshev pseudospectral method for wave equation with absorbing boundary conditions that does not use a first order hyperbolic system
F.S.V. Bazán
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 11, 2124-2133
Abstract:
The analysis and solution of wave equations with absorbing boundary conditions by using a related first order hyperbolic system has become increasingly popular in recent years. At variance with several methods which rely on this transformation, we propose an alternative method in which such hyperbolic system is not used. The method consists of approximation of spatial derivatives by the Chebyshev pseudospectral collocation method coupled with integration in time by the Runge-Kutta method. Stability limits on the timestep for arbitrary speed are calculated and verified numerically. Furthermore, theoretical properties of two methods by Jackiewicz and Renaut are derived, including, in particular, a result that corrects some conclusions of these authors. Numerical results that verify the theory and illustrate the effectiveness of the proposed approach are reported.
Keywords: Wave equation; Chebyshev pseudospectral methods; Eigenvalue stability; Pseudoeigenvalues (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410001199
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:11:p:2124-2133
DOI: 10.1016/j.matcom.2010.04.014
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().