Stability in impulsive Cohen–Grossberg-type BAM neural networks with time-varying delays: A general analysis
Kelin Li and
Huanglin Zeng
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 12, 2329-2349
Abstract:
In this paper, we investigate a class of impulsive Cohen–Grossberg-type BAM neural networks with time-varying delays. By establishing the delay differential inequality with impulsive initial conditions, and employing the homeomorphism theory, the M-matrix theory and the inequality a∏k=1lbkqk≤(1/r)(ar+∑k=1lqkbkr) (a≥0,bk≥0,qk≥0 with ∑k=1lqk=r−1, and r≥1), some new sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive Cohen–Grossberg-type BAM neural networks with time-varying delays are derived. In particular, the estimate of the exponential convergence rate which depends on the system parameters and the impulsive disturbance intension is also provided. An example is given to show the effectiveness of the results obtained here.
Keywords: Bi-directional associative memory; Cohen–Grossberg neural networks; Time-varying delays; Impulses; Global exponential stability (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410001618
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:12:p:2329-2349
DOI: 10.1016/j.matcom.2010.05.012
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().