Monte Carlo linear solvers with non-diagonal splitting
A. Srinivasan
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 6, 1133-1143
Abstract:
Monte Carlo (MC) linear solvers can be considered stochastic realizations of deterministic stationary iterative processes. That is, they estimate the result of a stationary iterative technique for solving linear systems. There are typically two sources of errors: (i) those from the underlying deterministic iterative process and (ii) those from the MC process that performs the estimation. Much progress has been made in reducing the stochastic errors of the MC process. However, MC linear solvers suffer from the drawback that, due to efficiency considerations, they are usually stochastic realizations of the Jacobi method (a diagonal splitting), which has poor convergence properties. This has limited the application of MC linear solvers. The main goal of this paper is to show that efficient MC implementations of non-diagonal splittings too are feasible, by constructing efficient implementations for one such splitting. As a secondary objective, we also derive conditions under which this scheme can perform better than MC Jacobi, and demonstrate this experimentally. The significance of this work lies in proposing an approach that can lead to efficient MC implementations of a wider variety of deterministic iterative processes.
Keywords: Monte Carlo; Linear solver (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409000962
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:6:p:1133-1143
DOI: 10.1016/j.matcom.2009.03.010
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().