The simple model of cell prestress maintained by cell incompressibility
Jan Vychytil and
Miroslav Holeček
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 6, 1337-1344
Abstract:
Living cells are reinforced by polymer fibers (the so-called cytoskeleton) which are responsible for their mechanical behaviour. There are many evidences that these fibres are prestressed without an external load. To include this prestress into mechanical models of living tissues is not an easy task. We propose an approach in which the intracellular prestress is maintained by the incompressibility of cells. A simple illustrative structure is studied in order to determine the dependence of stiffness on the level of prestress. Some macroscopic models of living tissues with prestressed cells are formulated. The results show a clear dependence of the macroscopic mechanical response on the level of prestress at microscale. The model exhibits some features of living cells (prestress-induced stiffening, strain hardening).
Keywords: Constant cellular volume; Prestress; Soft tissue modeling; Hyperelastic material (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409000391
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:6:p:1337-1344
DOI: 10.1016/j.matcom.2009.02.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().