EconPapers    
Economics at your fingertips  
 

IDS: Thermodynamic–kinetic–empirical tool for modelling of solidification, microstructure and material properties

J. Miettinen, S. Louhenkilpi, H. Kytönen and J. Laine

Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 7, 1536-1550

Abstract: IDS (InterDendritic Solidification) is a thermodynamic–kinetic–empirical tool for simulation of solidification phenomena of steels including phase transformations from melt down to room temperature. In addition, important thermophysical material properties (enthalpy, thermal conductivity, density, etc.) are calculated. The model has been developed in the Laboratory of Metallurgy, Helsinki University of Technology, Finland, since 1984. IDS includes two main modules, the IDS module and the ADC (Austenite DeComposition) module. IDS module simulates the solidification phenomena from liquid down to 1000°C and ADC the austenite decomposition down to room temperature. Both modules have their own recommended composition ranges. The IDS module is based on the so-called sharp interface concept. The ADC is mainly statistical based on empirical CCT (Continuous Cooling Transformation) diagrams. IDS tool is also coupled with the thermodynamic programmer's library, called ChemApp, developed by a German company, GTT-Technologies. This coupled package is used to simulate among other things multiphase inclusions during solidification. The present paper summarises the features of the IDS tool including the coupling with the ChemApp library.

Keywords: Solidification; Continuous casting; Microstructure; Material properties; Inclusions (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409003528
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:7:p:1536-1550

DOI: 10.1016/j.matcom.2009.11.002

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:80:y:2010:i:7:p:1536-1550