Discrete maximum principle for finite element parabolic models in higher dimensions
István Faragó
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 8, 1601-1611
Abstract:
When we construct continuous and/or discrete mathematical models in order to describe a real-life problem, these models should have various qualitative properties, which typically arise from some basic principles of the modelled phenomena. In this paper we investigate this question for the numerical solution of initial-boundary problems for the parabolic problems in higher dimensions, with the first boundary condition, using the linear finite elements. We give the conditions for the geometry of the mesh and for the choice of the discretization parameters, i.e., for the step sizes under which the discrete qualitative properties hold. For the special regular uniform simplicial mesh we define the conditions for the discretization step-sizes.
Keywords: Reliable modelling; Qualitative properties; Finite element; Parabolic equation; Higher dimensions (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409000342
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:8:p:1601-1611
DOI: 10.1016/j.matcom.2009.01.017
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().