Numerical modeling of two-phase transonic flow
Jan Halama,
Fayssal Benkhaldoun and
Jaroslav Fořt
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 8, 1624-1635
Abstract:
Our work is aimed at the development of numerical method for the modeling of transonic flow of wet steam including condensation/evaporation phase change. We solve a system of PDE’s consisting of Euler or Navier-Stokes equations for the mixture of vapor and liquid droplets and transport equations for the integral parameters describing the droplet size spectra. Numerical method is based on a fractional step technique due to the stiff character of source terms, i.e. we solve separately the set of homogenous PDE’s by the finite volume method and the remaining set of ODE’s either by explicit Runge-Kutta or implicit Euler method. The finite volume method is based on the Lax-Wendroff scheme with conservative artificial dissipation terms for structured grid. We also note result achieved by recently developed finite volume method with VFFC scheme. We discuss numerical results of steady and unsteady two-phase transonic flow in 2D nozzle, 2D and 3D turbine cascade and 2D turbine stage with moving rotor cascade.
Keywords: Two-phase flow; Condensation; Transonic flow; Fractional step (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409000421
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:8:p:1624-1635
DOI: 10.1016/j.matcom.2009.02.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().