Flow regimes identification and liquid-holdup prediction in horizontal multiphase flow based on neuro-fuzzy inference systems
Emad A. El-Sebakhy
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 9, 1854-1866
Abstract:
Numerous techniques have been used to identify flow regimes and liquid holdup in horizontal multiphase flow, but often neither perform well nor very accurate. Recently, neuro-fuzzy inference systems learning scheme have been gaining popularity in its capability for solving both prediction and classification problems. It is a hybrid intelligent systems scheme that is able to forecast an output in the uncertainty situations. This paper investigates the capabilities of neuro-fuzzy TypeI in identifying flow regimes and forecasting liquid holdup in horizontal multiphase flow. The performance of neuro-fuzzy modeling scheme is implemented using different real-world industry databases. Comparative studies were carried out to compare neuro-fuzzy systems performance with the most popular existing approaches in identifying flow regimes and predict liquid holdup in horizontal multiphase flow. Results show that neuro-fuzzy is flexible, reliable, outperforms the existing techniques and show bright future capabilities in solving different oil and gas industry problems, namely, rock mechanics properties, water saturation, faceis classification, and distinct bioinformatics applications.
Keywords: Adaptive neuro-fuzzy inference systems; Artificial neural networks; Flow regimes; Liquid-holdup (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410000030
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:9:p:1854-1866
DOI: 10.1016/j.matcom.2010.01.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().