Solitary wave solutions for a generalized KdV–mKdV equation with variable coefficients
Houria Triki,
Thiab R. Taha and
Abdul-Majid Wazwaz
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 9, 1867-1873
Abstract:
In this work, a generalized time-dependent variable coefficients combined KdV–mKdV (Gardner) equation arising in plasma physics and ocean dynamics is studied. By means of three amplitude ansatz that possess modified forms to those proposed by Wazwaz in 2007, we have obtained the bell type solitary waves, kink type solitary waves, and combined type solitary waves solutions for the considered model. Importantly, the results show that there exist combined solitary wave solutions in inhomogeneous KdV-typed systems, after proving their existence in the nonlinear Schrödinger systems. It should be noted that, the characteristics of the obtained solitary wave solutions have been expressed in terms of the time-dependent coefficients. Moreover, we give the formation conditions of the obtained solutions for the considered KdV–mKdV equation with variable coefficients.
Keywords: Variable coefficients combined KdV–mKdV equation; Solitary wave solutions; Amplitude ansatz method (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410000248
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:9:p:1867-1873
DOI: 10.1016/j.matcom.2010.02.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().