Semi-supervised outlier detection based on fuzzy rough C-means clustering
Zhenxia Xue,
Youlin Shang and
Aifen Feng
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 9, 1911-1921
Abstract:
This paper presents a fuzzy rough semi-supervised outlier detection (FRSSOD) approach with the help of some labeled samples and fuzzy rough C-means clustering. This method introduces an objective function, which minimizes the sum squared error of clustering results and the deviation from known labeled examples as well as the number of outliers. Each cluster is represented by a center, a crisp lower approximation and a fuzzy boundary by using fuzzy rough C-means clustering and only those points located in boundary can be further discussed the possibility to be reassigned as outliers. As a result, this method can obtain better clustering results for normal points and better accuracy for outlier detection. Experiment results show that the proposed method, on average, keep, or improve the detection precision and reduce false alarm rate as well as reduce the number of candidate outliers to be discussed.
Keywords: Pattern recognition; Outlier detection; Semi-supervised learning; Rough sets; Fuzzy sets; C-means clustering (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410000510
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:9:p:1911-1921
DOI: 10.1016/j.matcom.2010.02.007
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().