Pricing American options using a space-time adaptive finite difference method
Jonas Persson and
Lina von Sydow
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 80, issue 9, 1922-1935
Abstract:
American options are priced numerically using a space- and time-adaptive finite difference method. The generalized Black–Scholes operator is discretized on a Cartesian structured but non-equidistant grid in space. The space- and time-discretizations are adjusted such that a predefined tolerance level on the local discretization error is met. An operator splitting technique is used to separately handle the early exercise constraint and the solution of linear systems of equations from the finite difference discretization of the linear complementarity problem. In numerical experiments three variants of the adaptive time-stepping algorithm with and without local time-stepping are compared.
Keywords: Finite difference method; Adaptive method; American option; Stochastic volatility; Local time-stepping (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410000522
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:80:y:2010:i:9:p:1922-1935
DOI: 10.1016/j.matcom.2010.02.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().