Monte Carlo algorithms for evaluating Sobol’ sensitivity indices
I. Dimov and
R. Georgieva
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 81, issue 3, 506-514
Abstract:
Sensitivity analysis is a powerful technique used to determine robustness, reliability and efficiency of a model. The main problem in this procedure is the evaluating total sensitivity indices that measure a parameter’s main effect and all the interactions involving that parameter. From a mathematical point of view this problem is presented by a set of multidimensional integrals. In this work a simple adaptive Monte Carlo technique for evaluating Sobol’ sensitivity indices is developed. A comparison of accuracy and complexity of plain Monte Carlo and adaptive Monte Carlo algorithms is presented. Numerical experiments for evaluating integrals of different dimensions are performed.
Keywords: Sensitivity analysis; Global sensitivity indices; Multidimensional numerical integration; Adaptive Monte Carlo algorithm (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475409002936
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2010:i:3:p:506-514
DOI: 10.1016/j.matcom.2009.09.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().