EconPapers    
Economics at your fingertips  
 

Bayesian computation for geometric process in maintenance problems

Jianwei Chen, Kim-Hung Li and Yeh Lam

Mathematics and Computers in Simulation (MATCOM), 2010, vol. 81, issue 4, 771-781

Abstract: Geometric process modeling is a useful tool to study repairable deteriorating systems in maintenance problems. This model has been used in a variety of situations such as the determination of the optimal replacement policy and the optimal inspection-repair-replacement policy for standby systems, and the analysis of data with trend. In this article, Bayesian inference for the geometric process with several popular life distributions, for instance, the exponential distribution and the lognormal distribution, are studied. The Gibbs sampler and the Metropolis algorithm are used to compute the Bayes estimators of the parameters in the geometric process. Simulation results are presented to illustrate the use of our procedures.

Keywords: Geometric process; Gibbs sampling; Metropolis algorithm; Maintenance problem; Repairable deteriorating systems (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847541000193X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2010:i:4:p:771-781

DOI: 10.1016/j.matcom.2010.06.004

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:81:y:2010:i:4:p:771-781