Border collision bifurcations in one-dimensional linear-hyperbolic maps
Laura Gardini (),
Fabio Tramontana and
Iryna Sushko
Mathematics and Computers in Simulation (MATCOM), 2010, vol. 81, issue 4, 899-914
Abstract:
In this paper we consider a continuous one-dimensional map, which is linear on one side of a generic kink point and hyperbolic on the other side. This kind of map is widely used in the applied context. Due to the simple expression of the two functions involved, in particular cases it is possible to determine analytically the border collision bifurcation curves that characterize the dynamic behaviors of the model. In the more general model we show that the steps to be performed are the same, although the analytical expressions are not given in explicit form.
Keywords: Piecewise smooth map; Border-collision bifurcation; Bistability (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410003071
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2010:i:4:p:899-914
DOI: 10.1016/j.matcom.2010.10.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().