EconPapers    
Economics at your fingertips  
 

Finite volume approximation of a diffusion–dissolution model and application to nuclear waste storage

O. Angelini, C. Chavant, E. Chénier, R. Eymard and S. Granet

Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 10, 2001-2017

Abstract: The study of two phase flow in porous media under high capillary pressures, in the case where one phase is incompressible and the other phase is gaseous, shows complex phenomena. We present in this paper a numerical approximation method, based on a two pressures formulation in the case where both phases are miscible, which is shown to also handle the limit case of immiscible phases. The space discretization is performed using a finite volume method, which can handle general grids. The efficiency of the formulation is shown on three numerical examples related to underground waste disposal situations.

Keywords: Two phase Darcy flow in porous media; Finite volume method; Nuclear waste storage (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410004179
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:10:p:2001-2017

DOI: 10.1016/j.matcom.2010.12.016

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:81:y:2011:i:10:p:2001-2017