EconPapers    
Economics at your fingertips  
 

Linear least squares parameter estimation of nonlinear reaction diffusion equations

C. Mocenni, D. Madeo and E. Sparacino

Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 10, 2244-2257

Abstract: This paper concerns with the development of a direct parameter identification procedure for a class of nonlinear reaction–diffusion equations. We assume to know the model equations with the exception of a set of constant parameters, such as diffusivity and reaction term parameters. Using the finite element method the original partial differential equation is transformed into a set of ordinary differential equations. A linear least squares method is then applied to estimate the unknown parameters by using normal equations. The measurements errors obtained following this approach are significantly lower than the error obtained by a nonlinear least squares identification procedure. In order to better understand the differences between the two approaches, a sensitivity analysis with respect to initial conditions and mesh dimension is performed. The robustness of the method is tested on noise corrupted data, showing that the linear least square method may be sensitive to perturbations in the data. The procedure is applied to two ecological models describing the dynamics of population growth.

Keywords: Nonlinear reaction–diffusion equations; Parameter estimation; Finite element discretization; Linear and nonlinear LS (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475411001182
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:10:p:2244-2257

DOI: 10.1016/j.matcom.2011.05.006

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:81:y:2011:i:10:p:2244-2257