EconPapers    
Economics at your fingertips  
 

Center conditions and bifurcation of limit cycles at three-order nilpotent critical point in a septic Lyapunov system

Li Feng, Liu Yirong and Li Hongwei

Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 12, 2595-2607

Abstract: In this paper, center conditions and bifurcation of limit cycles at the nilpotent critical point in a class of septic polynomial differential systems are investigated. With the help of computer algebra system MATHEMATICA, the first 13 quasi-Lyapunov constants are deduced. As a result, sufficient and necessary conditions in order to have a center are obtained. The result that there exist 13 small amplitude limit cycles created from the three order nilpotent critical point is also proved. Henceforth we give a lower bound of cyclicity of three-order nilpotent critical point for septic Lyapunov systems.

Keywords: Three-order nilpotent critical point; Center-focus problem; Bifurcation of limit cycles; Quasi-Lyapunov constant (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847541100111X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:12:p:2595-2607

DOI: 10.1016/j.matcom.2011.05.001

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:81:y:2011:i:12:p:2595-2607