Modelling and simulation of autonomous oscillators with random parameters
Roland Pulch
Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 6, 1128-1143
Abstract:
We consider periodic problems of autonomous systems of ordinary differential equations or differential algebraic equations. To quantify uncertainties of physical parameters, we introduce random variables in the systems. Phase conditions are required to compute the resulting periodic random process. It follows that the variance of the process depends on the choice of the phase condition. We derive a necessary condition for a random process with a minimal total variance by the calculus of variations. A corresponding numerical method is constructed based on the generalised polynomial chaos. We present numerical simulations of two test examples.
Keywords: Ordinary differential equation; Differential algebraic equation; Uncertainty quantification; Polynomial chaos; Calculus of variations (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410003721
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:6:p:1128-1143
DOI: 10.1016/j.matcom.2010.10.028
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().