A new investigation into regularization techniques for the method of fundamental solutions
Ji Lin,
Wen Chen and
Fuzhang Wang
Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 6, 1144-1152
Abstract:
This study examines different regularization approaches to investigate the solution stability of the method of fundamental solutions (MFS). We compare three regularization methods in conjunction with two different regularization parameters to find the optimal stable MFS scheme. Meanwhile, we have investigated the relationship among the condition number, the effective condition number, and the MFS solution accuracy. Numerical results show that the damped singular value decomposition under the parameter choice of the generalized cross-validation performs the best in terms of the MFS stability analysis. We also find that the condition number is a superior criterion to the effective condition number.
Keywords: Method of fundamental solutions; Regularization technique; Regularization parameter; Effective condition number (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410003836
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:6:p:1144-1152
DOI: 10.1016/j.matcom.2010.10.030
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().