Nonparametric time series forecasting with dynamic updating
Han Lin Shang and
Rob Hyndman
Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 7, 1310-1324
Abstract:
We present a nonparametric method to forecast a seasonal univariate time series, and propose four dynamic updating methods to improve point forecast accuracy. Our methods consider a seasonal univariate time series as a functional time series. We propose first to reduce the dimensionality by applying functional principal component analysis to the historical observations, and then to use univariate time series forecasting and functional principal component regression techniques. When data in the most recent year are partially observed, we improve point forecast accuracy by using dynamic updating methods. We also introduce a nonparametric approach to construct prediction intervals of updated forecasts, and compare the empirical coverage probability with an existing parametric method. Our approaches are data-driven and computationally fast, and hence they are feasible to be applied in real time high frequency dynamic updating. The methods are demonstrated using monthly sea surface temperatures from 1950 to 2008.
Keywords: Functional principal component analysis; Functional time series; Penalized least squares; Ridge regression; Seasonal time series (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (18)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847541000145X
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Nonparametric time series forecasting with dynamic updating (2009) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:7:p:1310-1324
DOI: 10.1016/j.matcom.2010.04.027
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().