Modeling Hong Kong’s stock index with the Student t-mixture autoregressive model
C.S. Wong
Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 7, 1334-1343
Abstract:
It is well known that financial returns are usually not normally distributed, but rather exhibit excess kurtosis. This implies that there is greater probability mass at the tails of the marginal or conditional distribution. Mixture-type time series models are potentially useful for modeling financial returns. However, most of these models make the assumption that the return series in each component is conditionally Gaussian, which may result in underestimates of the occurrence of extreme financial events, such as market crashes. In this paper, we apply the class of Student t-mixture autoregressive (TMAR) models to the return series of the Hong Kong Hang Seng Index. A TMAR model consists of a mixture of g autoregressive components with Student t-error distributions. Several interesting properties make the TMAR process a promising candidate for financial time series modeling. These models are able to capture serial correlations, time-varying means and volatilities, and the shape of the conditional distributions can be time-varied from short- to long-tailed or from unimodal to multi-modal. The use of Student t-distributed errors in each component of the model allows for conditional leptokurtic distribution, which can account for the commonly observed unconditional kurtosis in financial data.
Keywords: Conditional leptokurtic distribution; Mixture distribution; Multi-modality; Nonlinear time series model (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410001631
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:7:p:1334-1343
DOI: 10.1016/j.matcom.2010.05.014
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().