The geometry and dynamics of binary trees
T. David,
Thomas van Kempen,
Huaxiong Huang and
Phillip Wilson
Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 7, 1464-1481
Abstract:
The modeling of a fully populated 3D tree able to regulate dynamically remains a relatively unexplored field. A non-dimensional representation of “autoregulation” coupled with an asymmetric binary tree algorithm has been developed. The tree has a defined topology as well as a spatial representation in 3D. An analysis using a simple linearization shows the systems dynamics when perturbed away from equilibrium. Results, based on previously published work by Karch and Schreiner are presented for a variety of parameters which provide different shapes of the tree and indicate a possible mechanism for “growing” the tree in specified directions. In addition the tree, through the use of local tagging has the ability to vary its size locally via a coupled set of conservation and reverting differential equations.
Keywords: Binary tree; Autoregulation; Dynamics (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410001254
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:7:p:1464-1481
DOI: 10.1016/j.matcom.2010.04.020
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().