Inverse problem of time-dependent heat sources numerical reconstruction
Liu Yang,
Mehdi Dehghan,
Jian-Ning Yu and
Guan-Wei Luo
Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 8, 1656-1672
Abstract:
This work studies the inverse problem of reconstructing a time-dependent heat source in the heat conduction equation using the temperature measurement specified at an internal point. Problems of this type have important applications in several fields of applied science. By the Green’s function method, the inverse problem is reduced to an operator equation of the first kind which is known to be ill-posed. The uniqueness of the solution for the inverse problem is obtained by the contraction mapping principle. A numerical algorithm on the basis of the Landweber iteration is designed to deal with the operator equation and some typical numerical experiments are also performed in the paper. The numerical results show that the proposed method is stable and the unknown heat source is recovered very well.
Keywords: Inverse problem; Heat source; Green function; Landweber iteration; Numerical results (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475411000280
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:8:p:1656-1672
DOI: 10.1016/j.matcom.2011.01.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().