Construction and implementation of highly stable two-step continuous methods for stiff differential systems
D’Ambrosio, Raffaele and
Zdzislaw Jackiewicz
Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 9, 1707-1728
Abstract:
We describe a class of two-step continuous methods for the numerical integration of initial-value problems based on stiff ordinary differential equations (ODEs). These methods generalize the class of two-step Runge-Kutta methods. We restrict our attention to methods of order p=m, where m is the number of internal stages, and stage order q=p to avoid order reduction phenomenon for stiff equations, and determine some of the parameters to reduce the contribution of high order terms in the local discretization error. Moreover, we enforce the methods to be A-stable and L-stable. The results of some fixed and variable stepsize numerical experiments which indicate the effectiveness of two-step continuous methods and reliability of local error estimation will also be presented.
Keywords: Two-step continuous methods; Local error estimation; A-stability; L-stability; Variable stepsize implementation (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475411000334
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:9:p:1707-1728
DOI: 10.1016/j.matcom.2011.01.005
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().