EconPapers    
Economics at your fingertips  
 

On an approach to deal with Neumann boundary value problems defined on uncertain domains: Numerical experiments

Jan Chleboun

Mathematics and Computers in Simulation (MATCOM), 2011, vol. 81, issue 9, 1869-1875

Abstract: Neumann boundary value problems for second order elliptic equations are considered on a 2D domain whose boundary is not known and might be even non-Lipschitz. Although the domain of definition is unknown, it is assumed that (a) it contains a known domain (subdomain), (b) it is contained in a known domain (superdomain), and (c) both the subdomain and superdomain have Lipschitz boundary. To cope with the Neumann boundary condition on the unknown boundary and to properly formulate the boundary value problem (BVP), the condition has to be reformulated. A reformulated BVP is used to estimate the difference between the BVP solution on the unknown domain and the BVP solution on the known subdomain or superdomain. To evaluate the estimate, the finite element method is applied. Numerical experiments are performed to check the estimate and its response to a shrinking region of uncertainty.

Keywords: Uncertain boundary; Uncertain domain; Neumann boundary value problem; Estimate (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475411000759
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:81:y:2011:i:9:p:1869-1875

DOI: 10.1016/j.matcom.2011.02.005

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:81:y:2011:i:9:p:1869-1875