Design of robust electric power system stabilizers using Kharitonov’s theorem
G. Rigatos and
P. Siano
Mathematics and Computers in Simulation (MATCOM), 2011, vol. 82, issue 1, 181-191
Abstract:
A robust power system stabilizer (PSS) is proposed as an effective way to damp-out oscillations in electric power systems. Oscillations of small magnitude and low frequency, linked with the electromechanical models in power systems, often persist for long periods of time and in some cases present limitations on the power transfer capability. The proposed PSS is designed according to Kharitonov’s extremal gain margin theory. It has the following advantages: (i) it is based on simultaneous stabilization of limited number of extreme plants, (ii) the control design can be based on frequency response analysis techniques (root locus diagrams or Nyquist plots) and (iii) the resulting controller is a low-order phase-lead compensator, which is robust to the change of operating points. The proposed power system stabilizer is tested through simulation experiments.
Keywords: Electric power system stabilization; Oscillation damping; Kharitonov’s theory; Frequency response analysis (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410002338
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2011:i:1:p:181-191
DOI: 10.1016/j.matcom.2010.07.008
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().