Design of nonlinear CMOS circuits in the Nano-GHz Era and its mathematical challenges
W. Mathis and
J.-K. Bremer
Mathematics and Computers in Simulation (MATCOM), 2011, vol. 82, issue 3, 381-391
Abstract:
Modern communication systems are working on industrial, scientific and medical (ISM) radio frequency (RF) bands. Today most research and development activities in industrial companies and universities are concentrated to frequency bands between 1GHz and 24GHz up to 60GHz. For the construction of mixed-signal chips for cellular telephones and other wireless LAN applications (Bluetooth, HIPERLAN, etc.) different semiconductor technologies are used. In order to combine analogue functionality for the RF front end and digital functionality for high-speed signal processing nonlinear circuit concepts must be used and CMOS technology has to be applied. In order to construct high-quality RF transceiver chips a submicron CMOS technology (180 nm and below) is needed. Therefore we come into the Nano-GHz Era of circuit design. In this work corresponding mathematical challenges of modern RF CMOS design of transceiver circuits, with a focus on oscillator circuits, are discussed. It is shown that these circuits can be modelled as dynamical systems and their environment and their devices by partial differential equations. For circuit design aspects bifurcation theory and other mathematical concepts from dynamical systems as well as advanced numerical methods can be applied in order to build up an efficient design system for these RF CMOS circuits. In this paper some key aspects of future circuit design will be presented and discussed.
Keywords: Dynamical systems; Bifurcation analysis; RF oscillator design; VCO; Nanoelectronic circuits (search for similar items in EconPapers)
Date: 2011
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410003204
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2011:i:3:p:381-391
DOI: 10.1016/j.matcom.2010.10.013
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().