EconPapers    
Economics at your fingertips  
 

A space–time adaptation scheme for unsteady shallow water problems

G.M. Porta, S. Perotto and F. Ballio

Mathematics and Computers in Simulation (MATCOM), 2012, vol. 82, issue 12, 2929-2950

Abstract: We provide a space–time adaptation procedure for the approximation of the Shallow Water Equations (SWE). This approach relies on a recovery based estimator for the global discretization error, where the space and time contributions are kept separate. In particular we propose an ad hoc procedure for the recovery of the time derivative of the numerical solution and then we employ this reconstruction to define the error estimator in time. Concerning the space adaptation, we move from an anisotropic error estimator able to automatically identify the density, the shape and the orientation of the elements of the computational mesh. The proposed global error estimator turns out to share the good properties of each recovery based error estimator. The whole adaptive procedure is then combined with a suitable stabilized finite element SW solver. Finally the reliability of the coupled solution–adaptation procedure is successfully assessed on two unsteady test cases of interest for hydraulics applications.

Keywords: Shallow water equations; Mesh adaptation; Time step adaptation; Recovery based estimator (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475411001534
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2012:i:12:p:2929-2950

DOI: 10.1016/j.matcom.2011.06.004

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:82:y:2012:i:12:p:2929-2950