A local refinement algorithm for the longest-edge trisection of triangle meshes
Ángel Plaza,
Sergio Falcón,
José P. Suárez and
Pilar Abad
Mathematics and Computers in Simulation (MATCOM), 2012, vol. 82, issue 12, 2971-2981
Abstract:
In this paper we present a local refinement algorithm based on the longest-edge trisection of triangles. Local trisection patterns are used to generate a conforming triangulation, depending on the number of non-conforming nodes per edge presented. We describe the algorithm and provide a study of the efficiency (cost analysis) of the triangulation refinement problem. The algorithm presented, and its associated triangle partition, afford a valid strategy to refine triangular meshes. Some numerical studies are analysed together with examples of applications in the field of mesh refinement.
Keywords: Local refinement; Triangle trisection; Longest-edge algorithms (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475411001698
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2012:i:12:p:2971-2981
DOI: 10.1016/j.matcom.2011.07.003
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().