Hidden solitons in the Zabusky–Kruskal experiment: Analysis using the periodic, inverse scattering transform
Ivan C. Christov
Mathematics and Computers in Simulation (MATCOM), 2012, vol. 82, issue 6, 1069-1078
Abstract:
Recent numerical work on the Zabusky–Kruskal experiment has revealed, amongst other things, the existence of hidden solitons in the wave profile. Here, using Osborne’s nonlinear Fourier analysis, which is based on the periodic, inverse scattering transform, the hidden soliton hypothesis is corroborated, and the exact number of solitons, their amplitudes and their reference level is computed. Other “less nonlinear” oscillation modes, which are not solitons, are also found to have nontrivial energy contributions over certain ranges of the dispersion parameter. In addition, the reference level is found to be a non-monotone function of the dispersion parameter. Finally, in the case of large dispersion, we show that the one-term nonlinear Fourier series yields a very accurate approximate solution in terms of Jacobian elliptic functions.
Keywords: Hidden solitons; Korteweg–de Vries equation; Inverse scattering transform; Nonlinear Fourier analysis (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475410001849
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2012:i:6:p:1069-1078
DOI: 10.1016/j.matcom.2010.05.021
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().