Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion
G. Gambino,
M.C. Lombardo and
M. Sammartino
Mathematics and Computers in Simulation (MATCOM), 2012, vol. 82, issue 6, 1112-1132
Abstract:
In this work we investigate the phenomena of pattern formation and wave propagation for a reaction–diffusion system with nonlinear diffusion. We show how cross-diffusion destabilizes uniform equilibrium and is responsible for the initiation of spatial patterns. Near marginal stability, through a weakly nonlinear analysis, we are able to predict the shape and the amplitude of the pattern. For the amplitude, in the supercritical and in the subcritical case, we derive the cubic and the quintic Stuart–Landau equation respectively.
Keywords: Nonlinear diffusion; Pattern formation; Amplitude equation; Quintic Stuart–Landau equation; Ginzburg–Landau equation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475411002692
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2012:i:6:p:1112-1132
DOI: 10.1016/j.matcom.2011.11.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().