EconPapers    
Economics at your fingertips  
 

Solitary wave solutions for a higher order nonlinear Schrödinger equation

Houria Triki and Thiab R. Taha

Mathematics and Computers in Simulation (MATCOM), 2012, vol. 82, issue 7, 1333-1340

Abstract: We consider a higher order nonlinear Schrödinger equation with third- and fourth-order dispersions, cubic–quintic nonlinearities, self steepening, and self-frequency shift effects. This model governs the propagation of femtosecond light pulses in optical fibers. In this paper, we investigate general analytic solitary wave solutions and derive explicit bright and dark solitons for the considered model. The derived analytical dark and bright wave solutions are expressed in terms of the model coefficients. These exact solutions are useful to understand the mechanism of the complicated nonlinear physical phenomena which are related to wave propagation in a higher-order nonlinear and dispersive Schrödinger system.

Keywords: Nonlinear Schrödinger equation; Solitary wave solution; Complex amplitude ansatz method (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475411002679
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2012:i:7:p:1333-1340

DOI: 10.1016/j.matcom.2011.11.003

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:82:y:2012:i:7:p:1333-1340