Determination of inner boundaries in modified Helmholtz inverse geometric problems using the method of fundamental solutions
B. Bin-Mohsin and
D. Lesnic
Mathematics and Computers in Simulation (MATCOM), 2012, vol. 82, issue 8, 1445-1458
Abstract:
In this paper, an inverse geometric problem for the modified Helmholtz equation arising in heat conduction in a fin, which consists of determining an unknown inner boundary (rigid inclusion or cavity) of an annular domain from a single pair of boundary Cauchy data is solved numerically using the method of fundamental solutions (MFS). A nonlinear minimisation of the objective function is regularised when noise is added into the input boundary data. The stability of numerical results is investigated for several test examples.
Keywords: Modified Helmholtz's equation; Inverse problem; Method of fundamental solutions; Regularisation (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412000262
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2012:i:8:p:1445-1458
DOI: 10.1016/j.matcom.2012.02.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().