EconPapers    
Economics at your fingertips  
 

Fully discrete finite element method based on pressure stabilization for the transient Stokes equations

Tong Zhang and Yinnian He

Mathematics and Computers in Simulation (MATCOM), 2012, vol. 82, issue 8, 1496-1515

Abstract: In this work, a new fully discrete stabilized finite element method is studied for the two-dimensional transient Stokes equations. This method is to use the difference between a consistent mass matrix and underintegrated mass matrix as the complement for the pressure. The spatial discretization is based on the P1–P1 triangular element for the approximation of the velocity and pressure, the time discretization is based on the Euler semi-implicit scheme. Some error estimates for the numerical solutions of fully discrete stabilized finite element method are derived. Finally, we provide some numerical experiments, compared with other methods, we can see that this novel stabilized method has better stability and accuracy results for the unsteady Stokes problem.

Keywords: Transient Stokes equations; Stabilized method; Error estimate; Numerical examples (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412000468
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2012:i:8:p:1496-1515

DOI: 10.1016/j.matcom.2012.02.007

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:82:y:2012:i:8:p:1496-1515