Global dynamics of two coupled parametrically excited van der Pol oscillators
Xia Wang and
Fangqi Chen
Mathematics and Computers in Simulation (MATCOM), 2012, vol. 82, issue 9, 1551-1571
Abstract:
Using a combination of analytical and numerical methods, the global bifurcations and chaotic dynamics of two non-linearly coupled parametrically excited van der Pol oscillators are investigated in detail. With the aid of the method of multiple scales, the slow flow equations are obtained. Based on the slow flow equations, normal form theory and the techniques of choosing complementary space are applied to find the explicit expressions of the simpler normal form associated with a double zero and a pair of pure imaginary eigenvalues. By the simpler normal form, using the global perturbation method developed by Kovacic and Wiggins, the analysis of global bifurcation and chaotic dynamics of two non-linearly coupled parametrically excited van der Pol oscillators is given. The results indicate that there exists a Silnikov type single-pulse homoclinic orbit for this class of system which implies the chaotic motions can occur. Numerical simulations are also given and verify the analytical predictions.
Keywords: Van der Pol oscillators; Normal form; Homoclinic orbit; Global bifurcation; Chaos (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412000456
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:82:y:2012:i:9:p:1551-1571
DOI: 10.1016/j.matcom.2012.02.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().