An automatic unstructured grid generation method for viscous flow simulations
Seyed Saied Bahrainian and
Zahra Mehrdoost
Mathematics and Computers in Simulation (MATCOM), 2012, vol. 83, issue C, 23-43
Abstract:
High aspect-ratio grids are required for accurate solution of boundary layer and wake flow. An approach for the efficient generation of isotropic and stretched viscous unstructured grids is introduced in this paper. The proposed grid generation algorithm starts with a very coarse initial grid. In far field regions, isotropic cells of excellent quality are produced using a combination of point insertion and cell subdivision techniques. Simultaneously, a directional grid refinement strategy is used to construct highly stretched triangular cells in viscous dominated regions. First, anisotropic unstructured grids are produced in the stream-wise direction. Then, cells close to the solid surface are refined to highly stretched layer of triangles suitable for boundary layer region. The accuracy of the current grid generation approach is assessed by laminar and turbulent compressible flow solutions around NACA0012, RAE2822, and NHLP multi-element airfoils. Numerical flow simulation results are compared with published data. Comparisons point to accuracy of the proposed unstructured viscous grid generation procedure.
Keywords: Unstructured grid; Viscous layers; Stretched cells (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412001760
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:83:y:2012:i:c:p:23-43
DOI: 10.1016/j.matcom.2012.05.021
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().