An LMI-based composite nonlinear feedback terminal sliding-mode controller design for disturbed MIMO systems
Saleh Mobayen,
Vahid Johari Majd and
Mahdi Sojoodi
Mathematics and Computers in Simulation (MATCOM), 2012, vol. 85, issue C, 1-10
Abstract:
This paper proposes a new nonlinear sliding surface for a terminal sliding mode (TSM) controller to achieve robustness and high performance tracking for the disturbed MIMO systems. The proposed method improves the transient performance and steady state accuracy in a finite time simultaneously. The control law is designed to guarantee the existence of the sliding mode around the nonlinear surface, and the damping ratio of the closed-loop system is increased as the output approaches the set-point. The conditions on the state error bound in finite time are expressed in the form of linear matrix inequalities (LMIs). A DC motor position tracking problem is considered as a case study. Simulation results are presented to show the effectiveness of the proposed method as a promising approach for controlling similar nonlinear systems.
Keywords: Sliding-mode control; Terminal sliding mode; Nonlinear sliding surface; Composite nonlinear feedback; Linear matrix inequality (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412002133
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:85:y:2012:i:c:p:1-10
DOI: 10.1016/j.matcom.2012.09.006
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().