Global dynamics of an SEIS epidemiological model with time delay describing a latent period
Rui Xu
Mathematics and Computers in Simulation (MATCOM), 2012, vol. 85, issue C, 90-102
Abstract:
In this paper, an SEIS epidemiological model with a saturation incidence rate and a time delay representing the latent period of the disease is investigated. By means of Lyapunov functional, LaSalle's invariance principle and comparison arguments, it is shown that the global dynamics is completely determined by the basic reproduction number. It is proven that the basic reproduction number is a global threshold parameter in the sense that if it is less than unity, the disease-free equilibrium is globally asymptotically stable and therefore the disease dies out; whereas if it is greater than unity, there is a unique endemic equilibrium which is globally asymptotically stable and thus the disease becomes endemic in the population. Numerical simulations are carried out to illustrate the main results.
Keywords: SEIS epidemic model; Saturation incidence; Latent period; Time delay; Global stability (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412002315
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:85:y:2012:i:c:p:90-102
DOI: 10.1016/j.matcom.2012.10.004
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().