EconPapers    
Economics at your fingertips  
 

Interactive hybrid evolutionary computation for MEMS design synthesis

Ying Zhang and Alice M. Agogino

Mathematics and Computers in Simulation (MATCOM), 2012, vol. 86, issue C, 32-38

Abstract: An interactive hybrid evolutionary computation (IHC) process for MEMS design synthesis is described, which uses both human expertise and local performance improvement to augment the performance of an evolutionary process. The human expertise identifies good design patterns, and local optimization fine-tunes these designs so that they reach their potential at early stages of the evolutionary process. At the same time, the feedback on local optimal designs confirms and refines the human assessment. The advantages of the IHC process are demonstrated with micromachined resonator test cases. Guidelines on how to set parameters for the IHC algorithm are also made based on experimental observations and results.

Keywords: Interactive hybrid computation; MEMS synthesis; Evolutionary computation; Optimal design (search for similar items in EconPapers)
Date: 2012
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847541100084X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:86:y:2012:i:c:p:32-38

DOI: 10.1016/j.matcom.2011.03.005

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:86:y:2012:i:c:p:32-38