A model for biological control in agriculture
M. Sen,
M. Banerjee and
E. Venturino
Mathematics and Computers in Simulation (MATCOM), 2013, vol. 87, issue C, 30-44
Abstract:
Persistence and global stability of the coexistence equilibrium of a recently published model in biocontrol of crops are here shown both in the absence and the presence of delays, introduced to simulate the handling time of the prey. In the latter case, the system can behave in two different ways, in dependence of whether a suitably defined key parameter exceeds a certain threshold. Namely, below the threshold the delay is shown not to be able to influence the stability of the coexistence equilibrium; above it, existence of a Hopf bifurcation is analytically proven. Further, in this range, numerical simulations reveal a route to chaotic behavior as function of the size of the delay. Some operative conclusions for agroecosystem management are drawn, although they ultimately depend on each particular situation.
Keywords: Global stability; Hopf bifurcations; Chaos; Spiders; Delays (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S037847541300013X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:87:y:2013:i:c:p:30-44
DOI: 10.1016/j.matcom.2013.02.001
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().