Lumped-parameter-based thermal analysis of a doubly radial forced-air-cooled direct-driven permanent magnet wind generator
Janne Nerg and
Vesa Ruuskanen
Mathematics and Computers in Simulation (MATCOM), 2013, vol. 90, issue C, 218-229
Abstract:
A lumped-parameter-based thermal analysis of a direct-driven permanent magnet wind generator with double radial forced-air cooling is presented. In the proposed thermal model, the thermal conduction and convection as well as the heating of the cooling fluid are modeled in terms of thermal resistances. The electromagnetic losses of the generator are calculated by a two-dimensional, non-linear, time-stepping finite element method. The developed thermal calculation model can be applied both to static and transient problems. The performance of the proposed thermal model is compared with the results calculated by using computational fluid dynamics. The presented modeling strategy is implemented into an analytical calculation tool, which is used in the design process of a 3.35MW high-torque low-speed direct-driven permanent magnet synchronous generator. Experimental results for a 3.35MW permanent magnet generator are presented.
Keywords: Permanent magnet synchronous generator; Thermal analysis; Air cooling; Thermal resistance networks (search for similar items in EconPapers)
Date: 2013
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475412002157
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:90:y:2013:i:c:p:218-229
DOI: 10.1016/j.matcom.2012.08.009
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().