Optimal design of electromagnetic devices: Development of an efficient optimization tool based on smart mutation operations implemented in a genetic algorithm
J. Denies,
H. Ben Ahmed and
B. Dehez
Mathematics and Computers in Simulation (MATCOM), 2013, vol. 90, issue C, 244-255
Abstract:
Topology optimization methods are aimed to produce optimal design. These tools implement optimization algorithms that modify the distribution of some materials within a predefined design space without a priori ideas regarding the topology or the geometry of the best solution. In this paper, we study a specific tool that combines a genetic algorithm, a material distribution formalism based on Voronoi cells and a commercial FEM evaluation tool. In particular, this paper shows, through a simple but representative case study, that it is possible to improve the performance of the topology optimization tool during the local search phase, i.e. the geometrical and dimensional optimization phase for which the topology optimization methods are originally not well-suited.
Keywords: Optimization; Design; Topology; Genetic algorithm; Voronoi cells (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475413000074
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:90:y:2013:i:c:p:244-255
DOI: 10.1016/j.matcom.2013.01.002
Access Statistics for this article
Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens
More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().