EconPapers    
Economics at your fingertips  
 

Optimal design of electromagnetic devices: Development of an efficient optimization tool based on smart mutation operations implemented in a genetic algorithm

J. Denies, H. Ben Ahmed and B. Dehez

Mathematics and Computers in Simulation (MATCOM), 2013, vol. 90, issue C, 244-255

Abstract: Topology optimization methods are aimed to produce optimal design. These tools implement optimization algorithms that modify the distribution of some materials within a predefined design space without a priori ideas regarding the topology or the geometry of the best solution. In this paper, we study a specific tool that combines a genetic algorithm, a material distribution formalism based on Voronoi cells and a commercial FEM evaluation tool. In particular, this paper shows, through a simple but representative case study, that it is possible to improve the performance of the topology optimization tool during the local search phase, i.e. the geometrical and dimensional optimization phase for which the topology optimization methods are originally not well-suited.

Keywords: Optimization; Design; Topology; Genetic algorithm; Voronoi cells (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0378475413000074
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:matcom:v:90:y:2013:i:c:p:244-255

DOI: 10.1016/j.matcom.2013.01.002

Access Statistics for this article

Mathematics and Computers in Simulation (MATCOM) is currently edited by Robert Beauwens

More articles in Mathematics and Computers in Simulation (MATCOM) from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:matcom:v:90:y:2013:i:c:p:244-255